skip to main content


Search for: All records

Creators/Authors contains: "Scroxton, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The low latitude Indian Ocean is warming faster than other tropical basins, and its interannual climate variability is projected to become more extreme under future emissions scenarios with substantial impacts on developing Indian Ocean rim countries. Therefore, it has become increasingly important to understand the drivers of regional precipitation in a changing climate. Here we present a new speleothem record from Anjohibe, a cave in northwest (NW) Madagascar well situated to record past changes in the Intertropical Convergence Zone (ITCZ). U‐Th ages date speleothem growth from 27 to 14 ka. δ18O, δ13C, and trace metal proxies reconstruct drier conditions during Heinrich Stadials 1 and 2, and wetter conditions during the Last Glacial Maximum and Bølling–Allerød. This is surprising considering hypotheses arguing for southward (northward) ITCZ shifts during North Atlantic cooling (warming) events, which would be expected to result in wetter (drier) conditions at Anjohibe in the Southern Hemisphere tropics. The reconstructed Indian Ocean zonal (west‐east) sea surface temperature (SST) gradient is in close agreement with hydroclimate proxies in NW Madagascar, with periods of increased precipitation correlating with relatively warmer conditions in the western Indian Ocean and cooler conditions in the eastern Indian Ocean. Such gradients could drive long‐term shifts in the strength of the Walker circulation with widespread effects on hydroclimate across East Africa. These results suggest that during abrupt millennial‐scale climate changes, it is not meridional ITCZ shifts, but the tropical Indian Ocean SST gradient and Walker circulation driving East African hydroclimate variability.

     
    more » « less
  2. Madagascar experienced a major faunal turnover near the end of the first millenium CE that particularly affected terrestrial, large-bodied vertebrate species. Teasing apart the relative impacts of people and climate on this event requires a focus on regional records with good chronological control. These records may document coeval changes in rainfall, faunal composition, and human activities. Here we present new paleontological and paleoclimatological data from southwestern Madagascar, the driest part of the island today. We collected over 1500 subfossil bones from deposits at a coastal site called Antsirafaly and from both flooded and dry cave deposits at Tsimanampesotse National Park. We built a chronology of Late Holocene changes in faunal assemblages based on 65 radiocarbon-dated specimens and subfossil associations. We collected stalagmites primarily within Tsimanampesotse but also at two additional locations in southern Madagascar. These provided information regarding hydroclimate variability over the past 120,000 years. Prior research has supported a primary role for drought (rather than humans) in triggering faunal turnover at Tsimanampesotse. This is based on evidence of: (1) a large freshwater ecosystem west of what is now the hypersaline Lake Tsimanampesotse, which supported freshwater mollusks and waterfowl (including animals that could not survive on resources offered by the hypersaline lake today); (2) abundant now-extinct terrestrial vertebrates; (3) regional decline or disappearance of certain tree species; and (4) scant local human presence. Our new data allow us to document the hydroclimate of the subarid southwest during the Holocene, as well as shifts in faunal composition (including local extirpations, large-vertebrate population collapse, and the appearance of introduced species). These records affirm that climate alone cannot have produced the observed vertebrate turnover in the southwest. Human activity, including the introduction of cattle, as well as associated changes in habitat exploitation, also played an important role. 
    more » « less
  3. Abstract

    The presence of large, rapid climate oscillations is the most prominent feature of the Earth’s last glacial period. These oscillations are observed throughout the Northern Hemisphere and into the Southern Hemisphere tropics. Whether similar oscillations are typical of prior glacial periods, however, has not been well established. Here, we present results of a study of the South American Summer Monsoon system that covers nearly the entire penultimate glacial period, from 195 to 135 ky BP. We use a well-dated, high-resolution (~50 y) time series of oxygen isotopes to show that the precession of the earth’s orbit is the primary control on monsoon intensity. After removing the precession signal we observe millennial oscillations that are very similar in amplitude and structure to the Dansgaard/Oeschger cycles of the last interglacial and that match well a synthetic reconstruction of millennial variability. Time series analyses shows that the most prominent of the observed cycles occur at considerably longer frequency (~3500 y) that the Dansgaard/Oeschger cycles from Marine Isotope Stages 2–4.

     
    more » « less
  4. Abstract

    The global paleomonsoon concept predicts an antiphase response of monsoon rainfall in the Northern and Southern Hemispheres at timescales where there is asymmetric solar forcing and/or asymmetric hemispheric temperature changes. However, as different monsoon systems have different sensitivities to local, regional, and global forcing, rainfall response may vary regionally, particularly during large global climatic changes such as the last deglaciation where warming occurred in both hemispheres. Despite its role as a key Southern Hemisphere counterpart to the Arabian and Indian summer monsoons, the behavior of the summer monsoon in the Southern Hemisphere of the Indian Ocean during the last deglaciation is unknown. Therefore, we present a new high‐resolution, precisely dated, and replicated speleothem stable isotope record from Tsimanampesotse National Park in southwest Madagascar that covers the last deglaciation. We show that speleothem growth phases respond largely to movements of the Southern Hemisphere summer Hadley circulation (summer extent of the tropical rainbelt/mean Intertropical Convergence Zone location), with some contribution from sea surface temperature changes at key times, such as during the Bølling‐Allerød. In contrast, speleothem δ18Ο responds primarily to sea surface temperature, in particular the location of the deep atmospheric convection isotherm, while summer Hadley circulation changes take a secondary role. Separating the varying influences of temperature and atmospheric circulation in controlling southwest Madagascan rainfall is critical to understanding rainfall variability in both the past and the future.

     
    more » « less